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Abstract. Extensions of the ordinary Lagrangian are used both in saddle-

point characterizations of optimality and in a development of duality

theory.
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1. introduction. Optimization problems from the real world usually

possess a linear-algebraic component, either directly in the form of pro-

blem linearities (e.g., those involving the node-arc incidence matrices

in network optimization) or indirectly in the more subtle form of certain

problem nonlinearities (e.g., those involving the coefficient matrices

in quadratic progranniing or, perhaps more appropriately , those involving

the exponent matrices in signomial progranining). As demonstrated in the

author’s recent survey paper II] and some of the references cited therein,

such a component can frequently be exploited by taking a (generalized)

geometric progranining approach. In fact, geometric progranining is

primarily a body of techniques and theorems for inducing and exploiting

as much linearity as possible.

The duality that exploits such linearity differs considerably from

ordinary Lagrangian duality . Since section 33 of Rockafellar’s book ~2]

indicates that any such duality can be viewed as originating from an ap-

propriat e Lagrangian (or saddle function) , it is natural to seek such a

Lagrangian for geometric progranining. Although such a Lagrangian and the

correspond ing saddle-point characterizations of optimality have already

been described in Ii] , proofs are given here for the first time.

In geometric progranining, problems with only linear constraints are

treated in essentially the same way as problems without constraints.

Only problems with nonlinear constraints require additional attention and

hence are classified as constrained problems.

Since many important problems are unconstrained (e.g., most network

optimization problems), and since the theory for the unconstrained case

is much simpler than its counterpart for the constrained case , the un-

constrained cage j g treat ed separately (even though its theory is actually

— _ _ _  ~~~~ .~~~~~
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embedded in the theory for the constrained case).

The only prerequisites for section 2 are the basic facts about the

conjugate transformation described in section 3.1.2 of (1] (and established

in (2]). An additiona l prerequisite for section 3 is the geometric

inequality established in section 3.3.3 of Eli .

2. The unconstrained case. In harmony with sections 2.1 and 3.1

of (1], suppose that Q :c3 is a (proper) function g with a nonempty (effective)

domain C,cE, (‘S-dimensional Euclidean space), and assume that Z is a non-

empty cone in E~ . For purposes of easy reference and mathematica l pre-

cision, the resulting “geometric progratmning problem” ~7 is now given the

following formal definition in terms of classical terminology and notation.

PROBLEM~ 7. Using the feasible solution set

calculate both the problem infiminn

c~~ inf ~ (c)
xE ./

and the optimal solution set

Needless to say , the “ordinary progranining” case occurs when Z is actually

the entire vector space 
~r
•

2.1. Saddle points. Our Lagrangian for problem c7 utilizes the “con-

jugate transform” h :P of g: C~-, whose domain

___________________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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E
~ 

sup ((y,x) -q(x)J is finite)
xEC~

and whose functiona l va lue

sup
x E C’~

The corresponding saddle-point characterization of optimality also utilizes

the “dual cone”

ØCLIEEr to~~(x,y) for each ~~EZ}.

The following definition lays a foundation for that characterization.

DEFINITION. For a consistent problem ~7 with a finite infiin*.un c, a ~ vector

is any vector ~,* with the two properties

y*Efr

and

cp thf L (,~ ;y*),
x E Z ~~~

where the (geometric) Lagrang~an

L~~~;y) (X ,y) -
~~
(u)•

it is wor th noting that even in the ordinary programing case the gea-

metric Lagrangian L~, is unlike the ordinary Lagrangian L0 g. In fact ,

L exists only if ~ has a conjugate transfo rm h.

The following theorem gives a saddle-point characterization of optima l

solutions x~ and P vectors y*. it also provides a basis for other its-
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portant characterizations of such vectors.

Theorem 1. Given that g:~ is convex and closed, j~~~x*EZ and let ~*EP.

Then x~ i~~~ptimal for problem ~7 and 1,1* is a P vector for problem ~ if and

only if the ordered pair (,x*;y*) is a “saddle point” for the La~ rangian ~~~
that is,

sup L (x*;?J) ~ L (x*;~j*) = inf L (x;y*),g x E Z

in which case L has the saddle-point valueq

L ( ~*;?I*) =~~~~~~*) c~.

Moreover,

sup L (r*;y) = L (x*;~~*)g

if and only if x~ ~~~~~ y* satisfy both the feasibility condition

~

and the subgradient condition

in which case

L ( ,c*;y*) =Q (r*) .

Futhermore,

S

-F

-—~~~—~~~~~~~~~~~~-- ———~~~ — - - -~~~~~- — ~~~~~~~~~~ - -. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~
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L (,~*;y*) = inf L (x;y *)

if and only if x~ ~~~ ~~ satisfy both the feasibility condition

y* E ’~i

and the orthogpnality condition

0 =

in which case

L ( x*;j I*)

Proof. The following two lenmtas must be used repetitively .

Lemna Ia. Given that ~7:? is convex and closed, 
a vector x satisfies

the restraint xEc3 if and only if sup L (x;y) is finite, in which case

I

sup L (x;y) =q(x)

and

Proof. Insuediate from the definition of L ( ,z~;!,) and conjugate transform

theory .

L~mna lb. A vector ~j ~~~ 
satisfies the cone condition ~ E’~e if and only if

inf L (x;y) is finite, in which case
x € Z  g

_  _  _ _
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m E  L ( x;i)  =

x E Z  ~
and

(xEZ L~~(x ;Y) = -~~(z~’)) = (x~:Z 1° =

Proof. Ininediate from the assumption that ~ is a cone; because in that

case it is clear that ~~~ if and only if inf (x,~j) is finite , in which
xEZ

case m E  (x ,y) 0.
x E Z

Now, assuming that x~ is optima l for problem ~7 and that y~ is a P

vector for prob lem 2, we deduce from Lemna la that

sup L (~*;y) =g(x*) = cp m E  L (,wj ;~~i* ) ,

yE.~ x E Z

by virtue of the defining properties for optimal solutions and P vectors.

Notice that  the f irst  and second equations show that  L (x*;?j*) .:~~~~~~*) ~~~~~~~,

and observe that the second and third equations show that g(x*) p~~L ( .~*;l,I*);

so we infer that

L~~X*;y*) g(x*)

Consequently , (x*;~ *) is a saddle point for L .

Conversely , assuming that (x*;,1*) is a saddle point for L , we deduce

from Lemma la that x*E~~; so x* is feasible by virtue of the hypothesis

x*CZ .  From Lemma la we also infer that sup L ~~*;y) g(~*); so the
7iE .~ ~saddle-point equations imply that

g(x*) m E  L (x;1,*),
x E Z ~~~

which in turn means that

~r (x*) �L (.x;?I*) for each xEZ.U

TL~~~~~
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Moreover, Lemma Ia also implies that

L (.~;y*) �g(r) for each x E .~,,

by virtue of the hypothesis y*El~. It then follows from these two dis-

played inequalities that U(x*)�U(r ) for each x-d. Thus, x~ is

optimal for problem c7, and hence r4~~Q (?r*). This equation and the pre-

ceding displayed equation show that y* is a P vector for problem ci, by

virtue of the hypothesis y*EP.

Now , assuming that sup L (x*;~,) L (x*;y*), we infer from Lemma laU

that X*cC.. and that L (x*;y*) =~7(x*) ; which in turn imply that ~*Eaç(r*)

by virtue of the hypothesis 1j*E.& and L~ zmta la. Conversely, assuming

that x*E(~ and that U*E~~~(x?*), we infer from L~~sua la that

SUP L (~*;~ ) = U (~*) =L (x*;l,*).iE. 5  ~

Finally , assuming that inf L (r;y*) L (x*;y*), we infer from Lemma
xEZ U U

lb that ~*E’~I and that L (.~*;y*) _h( y*) ,  which in turn implies that

O ( x *,~,*) by virtue of the definition of L~ (x*;~ *). Conversely, assuming

that ~~~ E ~i and that 0 (x*,y*), we infer from Lemma lb that

inf L ~r ;~,*) = _h (~,i*) = L  (x*;y*). q .e .d .U

Since the second assertion of Theorem 1 gives certain conditions that

are equivalent to the first saddle-point equation, and since the third

assertion of Theorem 1 gives certain other conditions that are equivalent

to the second saddle-point equation, Theorem 1 actually provides four diE-

ferent characterizations of all ordered pairs (x*;i4s*) of optimal solutions

x* and P vectors ?/*

Of course , each of those four character izations provides a character-

ization of al l  optima l solutions x* in terms of a given P vector ii*, as

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -
~ i~~~~~~ : ~ •~~ -~~~~ -~

-
~~~-- ~
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well as a characterization of all P vectors ~~~ in terms of a given optimal

solution X~.

Sti l l  another characterization of all optima l solutions .‘~~~ to certain

problems ci has been given by the author (3].

2.2. Duality. Corresponding to problem ~7 is the following “geo-

metric dual problem” 9.

PROBLEM B. Using the feasible solution set

inf L (x; ~j) is f ini te)
xEZ ~

‘

and the objective function

Inf L (x; ?/) .
x ( - Z  g

calculate both the problem supremtnn

Y= sup W(y)

and the optimal solution set

Y*~~fy EY ~I(y) =~~
}.

Even though problem i~ is essentially a “maximin problem” -- a type
of problem that t ends to be relatively d i f f icu l t  to analyse -- the

minimization problems that must be solved to obtain the objective function

W :7 have trivial solutions . In particular, Ltm~na lb clearly implies that

7=2jfl.~ and 2 ( (y ) = -~~(y ) ,

so prob lem t~ can actually be rephrased in the following more direct way.

- _____a_-———_ —— - 
_____s — —- 5---— - - - - -
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PROBLEM i~~. Usir~g the feasible solution set

calculate both the problem infimum

= i n f  -

~1 E Y

and the optima l solution set

y * f~-~ 7 !~~(~1) -

When phrased in this way , problem B closely resembles problem ~7 and is in

fact a geometric programming problem. Of course , the geometric dual pro-

blem A can actually be defined in this way, but the preceding derivation

serves as an important link between geometric Lagrangians and geometric

duality (analogous to the link between ordinary Lagrangians and ordinary

duality).

To further strengthen that link, we firs t need to develop the mos t.

basic duality theory -- a theory in which the following definition is

almost as important as the definition of the dual problems 7 and P.

• DEFINITION. The extremality conditions (for unconstrained geometric

programming) are :

(I) and

(II) O= (x,~i),

(III) y E~~~(x).

The following “duality theorem” is the basis for many important theorems . 

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~
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~h 2. ~~ x ~~~ y ~~ e f~ asib le solut ions to problems ‘7 and ~ re-

spectively (in which case the extremality conditions (I) are satisfied ),

then

0~~UC~’) 
+7~(~,),

with equality holding if and only if the extremality conditions (II) and

(III) are satisfied, in which case x and y are optima l solutions to

problems ~7 and B respective ly.

proof. The following fact is formalized as a lemma in order to facilitate

a comparison between the constrained and unconstrained cases .

Lemma 2a. U x E C- and y 
~~ 
.
~~~
, 

~~~~~~~~~~

(x,~,) ~~7(X) +h (~,),

with equality holding if and only if the extremality condition (III) is

satisfied.

Proof. Simply invoke the conjugate inequality presented in section 3.1.2

of 11].

Now, the fact that x and ~,i are in the cone Z and its dual ‘~i respectively
combined with Lemma 2a shows that

-~ 0 � (x,U) ~(x) +h(71),

with equality holding in both of these inequalities if and only if the

equality conditions stated in the theorem are satisfied . q.e.d.

_____

_ £4
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• The following important corollary is an limnediate consequence of

Theorem 2.

Corollary 2A. If the dual problems ci and & ~~e both consistent, then

(1) the infimum ~ for problem ‘1 is finite, and

0~~ ri~+h(~4~) for each b l E Y ,

(ii) the infimum ~ for problem P is f i n i t e,  and

The stric tness of the inequality In conclusion (ii) plays a

crucial role In almost all duality theorems.

DEFINITION. Consistent dual problems ci and P for which

0-~~ +i~

have a duality gap of cc~

A much more thorough discussion of duality theory and the role played by

• duality gaps is given In I i )  and some of the references cited therein.

The link be tween geometric Lagrangians and geometric duality can

now be further strengthened by the following tie between dual problem P

and the P vectors for problem I defined in section 2.1.

Theorem 3. Given that problem ~ is consistent with a finite infjmum ~~

(I) if problem ‘7 has a P vector, then problem P~ is consistent and

_ _ _ _ _ _ _  —- -~~~~—---• - - --~~-—-- — ---- ., .  - - - - - - - -
~~~~

=
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0 ~ p + ~, ,

(2) if problem A is consistent and 0 c - + i~, then

(~ * isa p vector for problem cii = ..r*.

Proof. If ~,* is a P vector for problem ci, then Lenina lb implies that ~j*

is feasible for problem A and that ~~ _h,(~1*), which in turn implies that

~ h( ~,*) by virtue of conclusion (i) to Corollary 2A. Consequent ly,

O~~~~ p +~~ and b~*E7*.

On the other hand , if problein A is consistent and O c p +4, then each

vecto r ~i* in 7* has the property cp _h (14,*), and hence each such vector ~,*

is a P vector for problem I by virtue of the first two paragraphs of this

subsection. q.e.d.

An important consequence of Theorem 3 is that , when they exist , all

P vectors for problem ~ ca n be obtain ed s imply by computing th e dual

optima l solution set 7*• However , there are cases in which the vectors

in ~~~~~ are not P vectors for problem ci, though such cases can occur only

when O < ~ - + ’~q , in which event Theorem 3 implies that there can be no P

vectors for problem 0’.

3. The constrained case. In harmony with sections 2 .2  and 3.3 of ( 1] ,

we introduce two nonintersecting (possibly empty) positive-Integer index

sets I and J , with f in i te  cardinali ty o(I) and o(J) respectively . In

terms of these index sets I and J we also introduce the following notation

and hypotheses:

(Ia) For each k E ( O ) t J I U J  suppose that  gk :Ck is a (proper) function

with a nonenipty (effective) domain Ck~~
E (n - dimensiona l Euclideank

5 - - - 

- 5- - - —- -. •  - - 
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space), and for eadi E J  Let 0~ be the ( ef f e c t i v e)  domain of  the “con-

jugate transform” h
1
:D
1 
of g

1
:C~ .

(h a) For each kE (O )UIUJ let ~
k be an independent vector vari-

able in E , and let K be an independent vector variable with components
nk

K
1 

for each jEJ.

(lila) Denote the cartesian product of the vector variables x~ , iEI

by the symbol x’, and denote the cartesian product of the vector

I Jvariables x , j € J by the symbol x . Then the cartesian product

0 1  J~~(x ,x ,x ) = x  is a vector variable in E , where

\_‘ ~
—‘

f l = f l  +Lj fl

(IVa) Assume that X is a nonenpty cone in E .

For purposes of easy reference and mathematical precision, the resulting

“geometric prograimning problem” A is now given the following formal

definition in terms of classical terminology and notation.

PROBLEM A. Consider the objective function G whose domain

C [(x,~C) I x k E c k, kE [03U1, and (x1,~ 1
)EC~ , jEJ )

and whose functional value

A 0G(x,K)~~g0(x )+Eg1 (x~,iç),
j J J

where

C4 ”((x
1,~C 4) either C , 0 and sup (x1,d1)<+a , or C ,>O x1 E K C )

dIED
J 

-‘

a 

- 5 - .-- - - -  —- - _ _
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sup (x1,d1) jj K 0 and sup
d IED d iED

A
E
j

(X , K
1

)

• K~g1
(x1/K~) if K~~> O and x1 E~~1

C
1
.

Using the feasible solution set

A
S ((x,K) EC x EX , and g~ (x )~ 0, 1€ I),

calculate both the problem infimuin

inf G(x,’)
(x ,K) ES

and the optimal solution set

S*~~r(X,~ )ES I G ( x ,~ ) ri1.

A
Needless to say, the unconst.rained case occurs when 1 J = ~1,

and X~~Z. On the other hand , the “ordinary progranining” case occurs

when

J = 0 ,

n m and C ~ C for some set C ~~E kE ~0i UI ,k k a o ni

and

U where there is a total of 1 +o(I)
U

X~’column space of

U identity matrices U that are tnxm .

_ _ _  
_ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

_ _ _  

I



- 15-

In particular , an explicit elimination of the vector spacc c or t d i t i :~n ,c~ X

by the linear transformation

U

/0~Lx( 
~) —

x

-
U

shows that problem A is then equivalent to the very general ordinary pro-

graumiing problem

Minimize g0 (z) subject to

iEI

zEC
0

3.1. Saddle points. Our Lagrangian for problem A utilizes the

“conjugate transform” hk
:D
k 

of g~ :C~~ whose domain

A k k k  k
D
k 

= fy E E 
1~
sup ((y ,x ) - g~ (x )] is finite)

k x ECk

and whose functional value

k k  k
hk

(y ) = sup ((y ,x ) - gk(x )].

~
k 
~ Ck

Notationally, it involves both the vector variable (x,K ) and an analogous

vector variable (y,X), where the vector variable y has the same cartesian-

product structure as the vector variable x and where the vector variable

A has components A~ for each iEI. The corresponding saddle-point character-

ization of optimality also utilizes the “dual cone”

L. 
_ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _  _ _ _ _
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Y f y EE~ O� (x,y) for each xEX }.

The following definition lays a foundation for that characterization .

DEFINITION. Consider the function H whose domain

D~~f(y,X )jy k EDk, kE [0)UJ , and (y
i

A ) E D+ iE I~

and whose functional value

H(y ,X) h0
(y0) +E h

~
(y
~
,
~ i
),

where

D~~~f(y
i
,Xi

)Ieither X~~=O and sup (ci,y
i)<~~~, or X~~>O and Y~~

E A i
D
i)c EC 1

and

sup (c
i
,y
i
) jf X

i
0 and sup (c t

,y’)<+co
c~~EC~ c

~~
EFC

iA
h~ (y ,X1

)

xi
hj(yt/Xj) if X

~~
).0 and y1 EX D .

For a consistent problem A with a finite infimuin ‘p, a P vector is any

vector (y*,X*) with the two properties

(y*,X*) ED

and

cp inf L (x,K ; y*,X*),
xEX g

where the (geometric) Lagrangian

_ _ _ _ _ _  _ _ _ _ _ _ _  _ _ _ _ _  

I

_ _ _ _ _ _ _ _  1TI~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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L (x ,~~; y, A) (x,y) - H(y ,A) -Z K h (y1).
g .1

Needless to say , even in the ordinary progranining case the geometric

Lagrangian L is unlike the ordinary Lagrangian L~~~g0
+~~ ~~~~ 

In fact,

L
g
exiStS only if 

~k 
has a conjugate transform hk 

for kE (O1U IUJ .

On the other hand , the following important concept from ordinary pro-

gransning plays a crucial role in the theory to come.

DEFINITION. For a consistent problem A with a finite infimuts c~, a Kuhn-

Tucker vector is any vector X~ in E (1) 
with the two properties

* jEt ,

and

C4~~ inf L ( x ,K;k*),
(x ,K ) E C

xEX

where the (ordinary) Lagrangian

L ( x ,K;X) C(x,K) +~~
I

It is important to realize that the preceding definition of Kuhn-Tucker

vectors differs considerably from the widely used defini tion involving

the Kuhn-Tucker optimality conditions. Even in the ordinary convex pro-

granining case the two definitions are not equivalent, though it is well-

known that the preceding definition simply athnits a somewhat larger set

of vectors in that case.

The following theorem gives a saddle-point characterization of

k - - _i~~~~ — - - ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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optimal solutions (x*,K*) and P vectors (y*,)~*). It also provides a

basis for other important characterizations of such vectors.

Theorem 4. Given that g
k
:Ck, kE(0)UIUJ is convex and closed, let

(x*,K*) be such that X*EX and K*�O , and let (y*,X*)E D. Then (x*,K*)

is optimal for problem A and (y*,X*) isa P vector for problem A if and

only if the ordered pair (x*,K*; y*,X*) is a “saddle point” for the

Lagrangign L
g~ th*t 

is,

sup L (x*,K*; y,)~) L (x*,K*; y*,X*) = inf L (x,K ; y*,X*),
(y,X)ED 

g g 
x EX  g

� 0

in which case L has the saddle-point value
g

L
g

(x*~K* ; y*,~*) G(x*,K*) =~~~ .

Moreover,

sup L (x*,K*; ~~~ =L (x*,K*; y*,N*)
(y,A )ED g g

if and only~ if (x*,K*) a~iJ (y*,k*) satisfy both the feasibility condition.

(x*,K*) E C,

*ig~ (x )� 0 [El ,

and the subgradjent and “complementary slackness” conditions

*0 *0y E~~g0
(x ),

* *i *i i * i  * *i * *ieither X1 — O and (x ,y ) sup (c ,y ), or ~~~ y EX ~~g~ (x ), iEI ,
C~~EC~

* *1X~g~ (x ) 0  iEI ,
I

L •- - •~~~~~~~~- - -—-~~-—~~~~~~~~~~—-
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either K~~~O and (x
*i y*j)~ 

r~~ 

(x*i,di), or K .>O and y*i~~~g(x*i/K *) JEJ ,
d El) 

)

in which case

* * * * * *Lg(X ,~K ; y ,~ ) = G(x , K ),

Futherinore,

* * * *L (x , K ~ y ,~ ) 
= inf L (x,K ; y*,X*)

g xEX g

* * * * 
-

if and only if (x ,K ) and (y ,)~ ) satisfy both the feasibility conditions

*y EY ,

h.(y*3)�0 j€ J,

and the orthogonality and complementary slackness conditions

0= (x*,y*),

J E J ,

in which case

Lg
(x ,K*; y*,X*)= _H (y*,~

*).

Proof. The following lemmas must be used repetitively.

Lemma 4a. Given that gk:Ck. kE ~O) Ut JJ is convex and closed, a vector

(x,~ ) with K � O  
satisfies the restraint (x ,K) EC and the constraints

g~ (x 1)�O , i - I  if and only if sup L (x,K; y,)) is finite , in which
(y,X)E.D 

g

Lase

sup L (x ,K; y,\) G(x ,K)
(y,X)ED 

g

and

-

~

—

~ 

- — ~~ -— -~~-
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f ( y , X) E D  L ( x ,K ;  y , X) G~x ,K)~

= f(y x) y0E~ g~~x~); either 0 and (x
1
,y

i
) = sup (c1,y~), or

C t
~
C
~

~~~~~~~ ~~ 
y~ E X1~g1(x 1), iEi ; x

igi (x’) 0 iEt ;

either K =0 and (x1 ,y 1) = sup (x1,d1), or
-~ dIE D .

J

and y3 E~,g.(x~/K .), j~:J~.

Proof. First , observe that

sup L (x,~~; y,~) = sup ~(x,y) }I(y,X) -~~~~

(y,A) ~ D 
g 

(y,X) ED J j

= sup [(x°,y0) +~ (X
t
,y5~~~ (x1 ,y~) -h0(y0) - ‘~~ h~ (y’,X .)

(y,X)€ D I J 1 ‘

-
~~~ K.h .(y

3)]
J J J

= 
0sup [(x

0
,y
0
) -h0

(y°) )+~ 
~. 
sup 

+ i(x
i,y~)+0~i

_ h
~ (yI

,xi
) ]

y ED0 I (y ~X~)ED~

+~~ 1
sup ((x~ ,y 3) - ~~ h .(y3)].

J y ED
1

From conjugate transform theory we know that the preceding supremum with

index 0 is finite if and only if x0EC0, in which case

0 0  0 0
0
sup [(x ,y ) -h (y )] g

0
(x )

y E D 0

and

[y°ED0Vx
°,y°) -h0(y°) g

0
(x°)~ ~~g0(x0).

Analogous information about the preceding suprema with indices i and

j is provided by the following two sub lenmias, which collectively comp lete

the proof of Lemma 4a..

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Sublemma 4ai. Given that g~ :C~ is Convex and c losed, the

+ ~(x
1,y1) +r l~~~~ - h

~
(y t ,)i)] is finite if and only if both

(y ,x1
) D1

x
1
EC 1 

and g~ (x t)+ ct~ �0~ in which case

i i  + 1
jsUP + [(x ,y ) + (i~~~~j 

- h~ (y ,~ 
= 0

(y ~x~) ~

and

E D~ I(x~ ,y
i) +ct~X1 

- h~ (y i,X1) ~)

= I (y i~~~~~ D~~ either 
= 0 and (x

i,y~) =

or X > O  and ~~~~ X~~g~ (x 1); ~.[g.(x’)+ci.] = 0).

Proof . First, observe that

~sup +
~ ‘~~

)ED i

= sup [su! x
t,y1) ~~~~~ - h~(y

i,x~)~ (Y’~y E D~))
~~~~ y

3-

= sup (a~ \1
+sup ((x

i ,yi) _ h~ (yi,Xj)~~(y
l
,~ j)ED~ 1]

X~~~0 y

/su~ f(x
i ,yi) - 

~~~~~~ 
(c~~, y~)~ ~~~~~ 

(c
’,y’) <+~~)

f y C E C i c E C i

I
= sup

[(x
1 ,yi) - xjh~ (yt/ X~)!y

t/X i E D i~ 
if

_ _ _ _ _ _ _ _ _ _ _ _ _ _  - - --~~~~~~~~~
- ,

~~~~~~~~~~~~~~~
- -~~~~~~~~
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if = 0 and xi E~~1

if X j 0 and x
~~~

Ei
= sup [cLiX . +1 . 1,

0 ‘- -
~~~~ if > 0 and x1 f C1

\~igi
(xi) if > 0 and x~~EC~

where the final step makes use of the fact that the zero function with

domain C1 (the topological closure of C~) is the conjugate transform of

the conjugate transform of the zero function with domain C
1. Now, note

that the last expression is finite only if x’E C., in which case the last

expression clearly

= sup [ci1
X
1 +X~g~ (x’)].

xi �0

I

But this expression is obviously finite if and only if g1(x1)+ ct~ �0 , in

‘which case this expression is c lear ly zero.

Finally, given that x~~EC~~ if (y~ ,X~)ED~ , then the geometric

inequality established in section 3.3.3 of [1] implies that

1 1 + I i s.
(x ,y ) +~~ X~ -h~ (y ,X1) � X~ [g1(x .~

with equality holding if and only if

either X~~~0 and (x
1 ,y1) = 

~~~ 
(c
1,y~), or X1>0 and ~~~~~~~~~~~~~

c EC~

Moreover , given that g~ (x1
)+cL~ �O , if (y~ ,X~ )ED~ , then the fact that

�O implies that

X~ (g1
(x~ ) +a

1
] � 0 , 

——~~~~~~~~~— — -~~~~~~~~~~~.‘-~~~~~~~~ -———~~~~- - —  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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with equality holding if and only if

X~~[g.(x~) +~
L
1
] O.

Taken together , these two inequalities and the corresponding characteriza-

tions of equality clear ly imp ly the last equation of Sub lenina 4ai.

Sublenina 4aj. Given that g~ :C~ is convex and closed and given that

the •sup ((x
3 ,y-~

\ - ‘..h .(y3)] is finite if and only if (x~ ,K .)ECt in
yi .D. ~ -~ ~

which case

.sup [<x~ ,y~) 
- ~.h .(y~ )J = g~ (x 3 ,v .)

y 3 ’D 3
and

~~ 
ED . (xJ ,yJ) - K .h .(y3) =g~ (x~ , K.))

= [Y
~ 
ED .~ either 

K • =0 and (x3 ,y~) = .sup3 d3 ED.
3

2! K
J

>0 !~~ 
y 3 E~~g~~(x

3 / ’~) 1.

Proof . First , observe that

.sup (x3 ,y3~ if K . 0
y3 ED .

sup ((x3 ,y3) -K .h .(y3)] = K g.(x~/K .) if K . >0 and x~ E ~.c.
~
1 ED 1 3  3 3 3 3

-‘ 3 1( +~ I f  K • ~O and x
1

J 3 3

Now , note that this expression is finite only if (x 3 , V .) ~- C~ , in which

case this expression is clearly

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~ ~~~~~~~~~~~~~~~~~



-r ~~~~~~~~~ - —-5. ~~~~~~~~-~— -z~-r

I

-24-

Finally, given that (x~ ,K.)E C~ , if Y
3 ED~~ then the geometric 

*

inequality established in section 3.3.3 of [1] asserts that

(x1,y1) - K~h1
(Y3) �gi (x~ ,K.),

with equality holding if and only if

either K . 0 and (x 3,y3) = .sup (x~ ,d
3), or K . >0 and x~ E K~~h.(y

1).3 d3 ED. -~ ~

3

This inequality and the corresponding characterization of equality imply

the last equation of Sublemma 4aj, because the relation x3 E K
1~
h~ (Y

1) is

equivalent to the relation y3 E ~g.(x
3/K .) when K . >0 (by virtue of conju-

gate transform theory).

The proof of Lemma 4a is now complete.

Lemma 4b. A vector (y,X) in D satisfies the cone condition yEY and the

constraints h.(y3) �O , j EJ if and only if inf L (x,K;y,X) Is finite, in
xtX 

g

K :. 0

which case

inf L (x,K;y,x) = -H(y,x)
x E X
K�0

and

f (x ,K ) t x EX , K � O ;~~~~~Lg
(x~K ;y, N)= _H(y,x )

= f(x,K) IxEX , K�O; 0 (x ,y); and K
1
h
1
(y1) 0, jEJ).

Proof. First, observe that

—-5- — — - --- ---5--- ------5— — - -  —-- —  — rn- --.-----. ----- - s - - -  ----- - -5- —5- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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inf L (x,K;y,~) = inf ~(x,y) - H(y,X) -~~~~

x ’EX 
g xE I J

= inf (x ,y) + inf ~i~’ - ( - h~ (y
1) J - H(y, A).

xEX < � O J

The proof of Lemma 4b is now immediate from the assumption that X is a

cone and elementary considerations.

Now , ass uming that (x*, Kk) is optimal f or problem A and that (y*,A*)

is a P vector for problem A , we deduce from Lemma 4a that

sup L (x*, K*; y ,X )  G(x*, K*) ~~p inf L (x , K ;y*, X*) ,
(y , X ) E D  g x E X  g

K 0

by virtue of the defining properties for optimal solutions and P vectors.

Notice that the first and second equations show that

L
g
(x*~

(’*; y*,A*) ~ G(x*,K*) cp, and observe that the second and third

equations show that G(x*,i~’*) ep~~L (x*,K*; y*,X*); so we infer that

L
g
(x*~K* ; y*,A*) G(x*,K*) c~.

Consequently , (x*,K*; y*,N*) is a saddle point for Lg•

Conversely , assuming that (x*,K*; y*,~*) is a saddle point for L , we

deduce from Lemma 4a that (x*, K*) E C  and gj (x*i) �0 , lE t ; so (x*,K*) is

feasible by virtue of the hypotheses x*E X and K* �0. From Lemma 4a

we also infer that sup L (x*,K*; y, A) G(x*,K*); so the saddle-point
(~,~ ) E D ~

equations imply that

G(x*,K*) = inf L (x ,K ;y*,X*),
x E X  g

K ~0

____________ ___________ 5 - - — -  ~~~~~~~~~~~~~~~~~~ -: t,-~~~: - ~~~~_
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which in turn means that

G(x *, K*) ~ L ( x , K ; y*, X*) for each x E  X and each K

Moreover, L~mna 4a also implies that

L
g
(x~K; y*,X*)�G(x,K) b r  each (x,K )ES ,

by virtue of the hypothesis (y*,X*) ED. It then follows from these

two displayed inequalities that G(x*,K*) �G(x,K) for each (x,K) ES. Thus,

(x*,K*) is optimal for problem A , and hence rp G(x*,K*). This equation

and the preceding displayed equation show that (y*, X*) is a P vector for

problem A , by virtue of the hypothesis (y*,X*) ED.

Now, assuming that sup L (x*,K*; y ,A)~~L (x*,K*; y*,~,*), we
(y,X)E D 

g g

infer from Lemma 4a that (x*,K*)EC and gj(x
*i)�0 , lE t , and that

Lg(X*~
(*; y*,X*) G(x*,K*). This in turn implies that

* *j *1 

Y
*0E~ g0

(X O
), 

* *i * *1

L 

either X1
0 and (x ,y ) sup ‘~c ,y ), or A~~>O and y EX 1~

ig
1
(x ),

c EC1 I El ,

* *1
X~g1

(x )=0 iEI ,

* *1 *j *1 1 * *1 *j *either K 0 and (x ,y ) = sup <x ,d ), or K ,>0 and y E~~g1 (x a/K ,),
-‘ d1 ED -~ -~ -~

by virtue of the hypothesis (y*,A*) E D and Lt~nna 4a. Conversely,

*iassmning that (x*,K*)EC and g~ (x )� 0, lEt , and that (y*,X*) satisfies

the pr.eceding displayed relations, we infer- from Lutma 4a that

sup L (x*,K*; y,X) G(x*,K*) =L (x*,K*; y*,A*).
~~~~~~~~~ 

g

Finally , assuming that L (x*,K*; y*,k*)= inf L (x,” ; y*,k*), weg x € X 8

- ~~~~~~~~~~~~~~~~~~
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infer from Lemma 4b that y*EY and h
j

(y*j)~ .0, j
~ 

J , and that

Lg
(x*/*; y*,X*) ~

_ H(y*,A*). This in turn implies that

0 = (x*,y*)

and

=0 j E 3 ,

by virtue of the hypotheses x*EX and K* �0. Conversely, assuming that

*1y*Ey and h
1
(y ) -~0, IEJ , and that (x*,K*). satisfies the preceding dis-

played relations , we infer from Lenina 4b that in! L (x,v ; y*,A*)
x EX  g

K ~
- 0

y*,A*). q.e.d.

Since the second assertion of Theorem 4 gives certain conditions

that are equivalent to the first saddle-point equation , and since the

third assertion of Theorem 4 gives certain other conditions that are

equivalent to the second saddle-point equation, Theorem 4 actually

provides four different characterizations of all ordered pairs (x*,K*;

y*,A*) of optimal solutions (x*,K*) and P vectors (y*,~ *).

Of course , each of those four characterizations provides a

characterization of all, optimal solutions (X*,V*) in terms of a given

P vector (y*,A*), as well as a characterization of all P vectors (y*,X*) in

terms of a given optimal solution (x*,K*).

Still another characterization of all optimal solutions (x*,K*) to

certain problems A has been given by the author (3J .

3.2. Duality. Corresponding to problem A is the following “geo-

metric dual problem” B. 
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PROBLEM B. Using the feasible solution set

T= f(y,X) ED J inf L (x,V ; y,X) is finite)
xEX g

( � Q

and the objective function

~i(y ,X) inf L (x,K ; y,X),
xEX g

K >0

calculate both the problem supremwn

i~ sup W(y,X)
(y,A) E T

and the ~ptimal solution set

E T ~%‘(y,~ ) =

Even though problem B is essential ly a “inaximin problem” -- a type
of problem that tends to be relatively difficult to analyse -- the minimi-

zation problems that must be solved to obtain the objective function 1:T

have trivia l solutions . In particular , Lemma 4b clearly imp lies that

T = f(y,X) D l y ~ Y , and h.(y3) � 0, j EJ} and W(y,\) =

so problem B can actually be rephrased in the following more direct way.

PROBLEM B. Consider- the objective function H whose domain

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ jEt)

and whose functional value

H(y,X) “h0
(y0) +E ~~~~~~~~~

_ _ _ _  5-—- -- —-5-—-—-- ‘ -5 -5----.——-- - -.-— ---
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where

D ((y
i A )  either 0 

~~4 
sup (c~ ,y~)<+co ,or ‘~~~>~~ ~~~ y~~E A1D~3

c~- € C
i

and

sup (c1,y
t
) if ~. 0 and sup

c~~EC~ c~~EC~

h
+(yi,X1)~~ ~

(~ X~hj(y
i/~~) if A~ >O and y

1 E X1D~.

Using the feasible solution set

T~~f (y,X) ED yEY , and h .(y~) �0 , j E 3),

calculate both the problem infimum

A
~~

- inf H(y,A) -t
(y,X) E~ T

and the optimal solution set

T* ((y,X) E T j H(y,A) =

~&ien phrased in this way, problem B closely resembles problem A and is

in fact a geometric programming problem . Of course, the geometric dual

problem B can actually be defined in this way, but the preceding

derivation serves as an important link between geometric Lagrangians

and geometric duality (analogous to the link between ordinary Lagrangians

and ordinary duality).

To further strengthen that link, we first need to develop the most

basic duality theory -- a theory in which the following definition is 

‘ - -5—— --5 _ _
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almost as important as the definition of the dual problems A and B.

DEFINITION. The extremality conditions (for constrained geometric

programming ) are:

(I) x EX and y~~Y ,

(II) g~~(x’) ~ 0 , i E I  and h
1

(y 1) ‘~ O , j  ~~J ,
(I t t)  0 = <x ,y)

0~~ 0(I V) y E~~g0(x ) ,

(V) either A . =0 and (xi ,y i) a  sup (c~ ,y~ ) or A~~> 0  and y i E~~~ -5jg
1(~ i ) ,I, 

c~~EC1
iEt ,

(‘/1) either K = 0  and (xi,yi> = sup (x~,d~) or ~ -.0 and y~ E~~g (~~-1/K ),I d1 ED
J

J E J ,

IEI, and K
1
h
1
(yi)=O , JE J.

The following “duality theorem” is the basis for many important
theorems.

rent 5. If (x,K) and (y,X) are feasible solutions to problems A and

B respectively (in which case the extremality conditions (I) and (II)

are satisfied), then

!qith equality holding if and only if the extrmnaltty conditions (III)

through (‘/ll) are satjsfjed~ in which case (x , V ) and (y,~~) a re optimal

solutions to problems A and B respectively.

- - -

~

- ~~~~~~~~~~
—- — 5  — - — -- -- --— -5 -- -’-
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Proof. The following lemma will also be used in the proof of other

theorems.

Lemma 5a. If (x ,K) E C and (y,X) ED , then

(x ,y) ~~G(x , K) +�,T~ X~g~~(xi) + H ( y , X) +‘i..
I J -

with equality holding if and only if the extremality conditions (IV) -

through (VI ) are satisfied. Mor-eover, if h
1

(y1) ~~0 , j E J  (i .e. the second

part of extremality condition (It) is satisfied),  then

G(x,K) +~~ X1
g~ (x~) +H(y,X) +>~ K h (y

1) ~ G(x,K) 4-Z A~ gj (x i) + H ( y , X ) ,
I J t

wi th equality holding if and only if the second part of extremality con-

dition (VII) is satisfied. Furthermore, if g~~(x~ ) � O ~ i E I  (i.e. the

first part of extremality condition (It) is satisfied), then

G(x, K) +~~~ X1
g~ (x

i) + H(y , A) (x , ~) + H(y , A)

with equality holding if and only if the first part of extretnality

condition (VII) is satisfied.

Proof. From the conjugate inequality presented in section 3 .1.2 of [1]

we know that

with equality holding if and only if the extretnality condition (IV) is -

satisfied . From the geometric inequality established in section 3.3.3

of (lJ we know that

I

_ _ _ _  - - - - - -  . 5 - -———-- -
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(x~~,y~ ) �X ~g~~(x~) +I4~(y
i
,Xj),

with equality holding if and only if the extremality condition (V) is

satisfied. Likewise, we know that

with equality holding if and only if the extretnality condition (VI) is

satisfied. Adding all l+o(I)+o(J) of these inequalities and taking

account of the definifig equations for x, y ,  C, and H proves the first

assertion. The second assertion is an immediate consequence of the fact

that K
1 
>0 when (x1,K

1
) E C~, j E J; and the third assertion is an

immediate consequence of the fact that X~~�O when (y
i
,X i

)ED~, iEI. q.e.d.

Now, the fact that x and y are in the cone X and its dual Y respectively

combined with a sequential application of all three assertions of Lenina

5a shows that

O � (x ,y)� G (x ,K ) + ~~ X~g~~(x~) + H ( y ,X) +~~ K~h
1

(Yi )

� G(x,K)+~~ X~g~ (x~)+H(y ,A)

�

with equality holding in all four inequalities if and only if the equality

conditions stated in the theorem are satisfied. q.e.d.

The following important corollary is an immediate consequence of

Theorem 5.

-- —- -——--—-5—~~~~~~~~— - - --- —~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~- ----— 5 -  -— —~~~~‘---- -~~~~~ ————--  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- 5
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Corollar -y 5A . If the dual problems A and B are both consistent, then

(i) the infimum c-’ for problem A is finite, and

0 ~ + H(y, A) for each (y, A) E T,

(ii) the infimum u~ for problem B is finite, and

0 ‘~ ç~4- 4i .

The strictness of the inequality in conclusion (ii) plays a crucial

role in almost all duality theorems.

DEFINITION. Consistent dual problems A and B for which

have a duality gap of ~~~~~~~

A much more thorough discussion of duality theory and the role played by

duality gaps is given in (11 and some of the references cited therein.

The link between geometric Lagrangians and geometric duality can

now be futher strengthened by the following tie between dual problem B

and the P vectors for problem A defined in section 3.1.

Theorem 6. Given that problem A is consistent with a finite jnfimum T,

(1) if problem A has a P vector, then problem B is consistent and

(2) if problem B is consistent and 0 ç +~,, then

_______________ ~~~- - — ~~ - - -~~~~~~~~~ -5 ~~~~~~~~—~~~~~~~~~~ — ‘- -— -5 -‘ —- ~~~——~~~~~~~~~~~ —— —- -- -~~.-— —— ~~~ 
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(y*,A*) is a P vector for problem A )=T*.

Proof. If (y*,X*) is a P vector for problem A , then Letmna 4b

implies that (y*,X*) is feasible for problem B and that r~~~
_H(y*,A*),

which in turn implies that $ H(y*,A*) by virtue of conclusion (i.) to

Corollary 5A. Consequently , 0~~~’+~ and (y*,X*)ET*.

On the other hand, if problem B is consistent and O~~ p +~~, then each

vector (y*,)*) in T* has the property cc _H(y*,X*), and hence each such

vector (y*,X*) is a P vector for problem A by virtue of the first two

paragraphs of this subsection. q.e.d.

An important consequence of Theorem 6 is that, when they exist, all

P vectors for problem A can be obtained simply by computing the dual

optimal solution set T*. However, there are cases in which the vectors

in T* are not P vectors for problem A, though such cases can occur only

when O<~~4-4r , in which event Theorem 6 implies that there can be no P -
-

vectors for problem A.

The following theorem provides an important tie between dual problem

B and the Kuhn-Tucker vectors for problem A defined in section 3.1.

Theorem 7. Given that problems A and B are both consistent and that

O c ~+$, if there is a minimizing sequence 
~~~~~~~~ for problem B (i.e.

~~~~~ Urn ~~~~~~~~~~~ ~~~ that Urn ~q exists and is finite,
q m + o  q-’+~

A
then X* u r n  is a Kuhn-Tucker vector for problem A.

q-.+c~

Proof. The feasibility of ~~~~~~~~~ implies that ~~~~~ for each q , so

iEI. 

5- -—  -— —-5 - - --~~~~~~~~~~ - - 5 ~~~~~~~~~~~~~~~~
-— — -
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Now, the feasibility of (~
q
,~~) and a sequential application of the

f i rs t  two assertions of Lennna 5a show that

~~~ ~ G(x ,K) +E ~~g~ (xi) ~~~~~~~~~ +~ K
1
h~~~~

1)
I j

~ G(x,K) +~: X~g~ (x
i
) ~~~~~~~~

for each (x,w’)EC and for each q. Consequently , for- each (x,K)EC such

that x E X we deduce that

0�G(x ,K)+� X~gj(x
i) + H(y

(~,~~)
I

for each q, because This inequality and the hypotheses

lim H(y~ ,~~ )=$ and lint ~~~~~~~~ clearly imply that
q-’+a~

0� G(x,K) +E X~g~ (x~) +‘ji

for each (x,K )EC such that xEX . Using the fact that L (x,K ;X*)~~G(x,K)+

E Xjgi
(x ) and the hypothesis 0 ~~~~~~ we infer from the preceding in-

I
equality that

cp~ inf L0(x,
K ; X*).

(x,K) EC
x E X

Now , choose a minimizing sequenc e ((x ~ ,K~ ) )~ for problem A, and then observe

for each q that

~~~~~~~~~~~ �G(X ~ ,K~),

because A~~�O and g1(
~~L)5Q , LEt. From the construction of f (x~~K~)~~ 

-

we know that ~~~~~~~~~ and for each q and that p lim G(x~,~~ );

so we conclude from the preceding two displayed inequalities that

hi
- - 5 — - — ,  ‘—-5 - ‘ 5- -——--5— - —‘— -5— —‘~~~~~

- -- -
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p inf L(x,K; X*). q.e.d.
(x , K) E C

xE X

The following corollary ties the dual optimal solution set T*

directly to Kuhn-Tucker vectors for problem A.

Corollary 7A. Given that problems A and B are both consistent and that

O~~~ +4,, each (y*,X*) ET* provides a Kuhn-Tucker vector A* for problem

A.

The following corollary ties the set of all P vectors (y*,X*) for

problem A directly to the set of all Kuhn Tucker vectors X* for problem A.

Corollary 7B. Given that problem A is consistent with a finite infintum

~~~~ P ~~~~~~ (y*, A*) for problem A p~pvides a Kuhn-Tucker vector

X* for problem A.

Proof. Use Theorem 6 along with Corollary 7A.

Finally, it is worth noting that Theorem 7 and its two corollaries

also provide certain connections between dual problem B and the

“ordinary dual problem” corresponding to problem A. Those connections

are left to the reader’s imagination while more subtle connections are

given in [4J .
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